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ABSTRACT 

A New Mexico sub-bituminous coal was f l a s h  pyrolyzed i n  an He 
atmosphere i n  an entrained downf low tubular reactor  a t  temperatures 
from 7OO0C to  1000°C and a t  50 p s i .  I n  addi t ion to c1-C~ gases, CO 
and BTX, a s  high as  9.82 of the dry, ash-free coal was converted to 
tar a t  70OoC. The t a r s  were character ized v ia  elemental ana lys i s  and 
I H  NMR spectroscopy. l H  NMR data  show tha t  the s t r u c t u r a l  charac- 
t e r i s t i c s  of the tars with respect  to  hydrogen type d i s t r i b u t i o n  de- 
pend on the s e v e r i t y  of the react ion conditions. The non-aromatic 
hydrogen content of the t a r s  decreased with increase i n  the pyrolysis  
temperature whereas the aromatic hydrogen content of the t a r s  followed 
an opposite trend. 

INTRODUCTION 

The d e v o l a t i l i z a t i o n  of coal by rapid or  f lash  heating produces 
primary tar a s  a r e s u l t  of thermal decomposition and depolymerization 
of the s t a r t i n g  mater ia l .  The ex ten t  of a l t e r a t i o n  of the physico- 
chemical proper t ies  of the primary devola t i l i za t ion  products v ia  sub- 
sequent decomposition react ions depends on the process conditions i n  
the pyrolyzer. FOT some types of coal ,  the primary d e v o l a t i l i z a t i o n  
may be complete i n  a very shor t  residence time, €.e., wi thin the f i r s t  
few f e e t  of a reactor .  The primary products, i f  allowed to pass 
through addi t iona l  length of a f u l l y  heated reac tor ,  undergo extensive 
secondary reac t ions  and the qua l i ty  and quant i ty  of the resu l t ing  end 
products depend on the sever i ty  of the react ion conditions. 
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The e f f e c t s  of various process parameters on the y ie ld  and the 
k ine t ics  of formation of gaseous products and li ht  organic chemicals 
such as  BTX have been s t u d i e d  e ~ t e n s i v e l y . ( ~ - ~ f  I n  most instances ,  
ana lys i s  of the above high v o l a t i l e  products were made with the use of 
on-l ine GC instrumentation. However, low v o l a t i l e ,  high molecular 
weight and multi-functional tar f r a c t i o n  i s  complex i n  nature  and re- 
q u i r e s  spec ia l  handling. It  is a l s o  noted tha t  the y ie ld  of t a r  f rac-  
t ion is general ly  low when compared t o  tha t  of other  high v o l a t i l e  
products. I n  consequence, charac te r iza t ion  s tudies  on t a r  from coal 
pyrolysis  experiments a r e  l imited.  

I n  an e f f o r t  to obtain a b e t t e r  p ic ture  of the progressive 
changes t h a t  accompany coal d e v o l a t i l i z a t i o n ,  we appl ied several  
modern ana ly t ica l  techniques to gas, l i q u i d ,  t a r  and char products 
from the pyrolysis  of a sub-bituminous coal. I n  a previous paper, the 
e f f e c t s  of temperature, residence time and the pyrolysis  atmosphere on 
the yields  of gaseous products and BTX were reported.(4) I n  t h i s  
paper, we present the r e s u l t s  of elemental and I H  NMR charac te r iza t ion  
of t a r s  from the same s e t  of pyrolysis  experiments. The r e s u l t s  of 
capillary-GC/MS and pyrolysis-GC/MS charac te r iza t ion  of o i l  and as- 
phaltene f rac t ions  of the t a r s  as  well as  SEM and FTIR analyses of the 
chars w i l l  be reported elsewhere. 

EXPERIMENTAL 

Pyrolysis  Experiments: 

A New Mexico sub-bituminous coal with ana lys i s  shown i n  Table 1 
was f lash  pyrolyzed i n  a highly instrumented 1-in. I .D.  by 8 - f t  long 
entrained downflow tubular reactor .  The reac tor  system has been de- 
scribed i n  d e t a i l  previously.(5) Multiple analyses of COX, c1-C~ 
gases and BTX a r e  made v ia  an on-line GC and the products heavier than 
BTX a r e  col lected i n  a Freon cooled (--4OOC) condenser. A t  the end of 
each experiment, the reactor  i s  washed with vythane and the washings 
a r e  combined with the contents of the condensers. From the l i q u i d  
mixture, vythane is d i s t i l l e d  off i n  a rotory evaporator to obta in  the 
t a r  product. 

Analytical Characterization: 

A Perkin-Elmer elemental analyzer was used to determine the e le -  
mental composition of tars. The C ,  H and N content  of the t a r s  were 
determined d i r e c t l y  and ( 0  + S) was obtained by difference.  

Proton-NMR spectra  a t  60 MHz were obtained with a Varian Model 
EM-360 Spectrometer. The samples were dissolved i n  CDCl3 and the 
spectra  were recorded a t  an ambient temperature of -25°C with t e t r a -  
methylsilane (TMS) a s  in te rna l  standard reference. 
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RESULTS AND DISCUSSION 

Figure 1 shows the percent carbon conversion to  CH4, C2H4, COX 
and BTX a s  a func t ion  of temperature and residence time. A t  a l l  re- 
sidence times, the y i e l d  of ethylene maximized a t  900oC, whereas t h a t  
of COX continued to  increase with temperature. By taking gas and BTX 
samples from d i f f e r e n t  sample taps  located a t  every 2- f t  length of the 
reac tor ,  the y ie ld  data f o r  these products corresponding to a t  l e a s t  
four d i f f e r e n t  res idence times of the coal p a r t i c l e s  can be obtained 
from one s ingle  run. 

The tar is  co l lec ted  a t  the end of the run and the y ie ld  corre- 
sponding to  the longest  coal  p a r t i c l e  residence time only is ava i lab le  
from a p a r t i c u l a r  run. I n  the s e t  of experiments reported here, the 
longest coal p a r t i c l e  residence time was 1.5 - 1.6 sec. The t a r  y ie ld  
decreased with pyro lys i s  temperature as shown i n  Figure 2. Roughly 
half of the t a r  was made up of hexane soluble  o i l ,  the remaining being 
hexane-insoluble but  benzene-soluble asphaltenes. 

The e f f e c t  of pyrolysis  temperature on the absolute  elemental 
composition of unfract ionated t a r s  is shown i n  Figure 3. There is a 
marked d i f fe rence  i n  the elemental composition of the t a r s  obtained a t  
700° and 80OoC. P a r t i c u l a r l y  not iceable  is the difference i n  oxygen 
content of these tars. A t  temperatures higher than 8OO0C, there  is no 
s i g n i f i c a n t  v a r i a t i o n  i n  the elemental composition of tars. 

Weighted d i s t r i b u t i o n  of C,  H ,  N and 0 i n  t a r  can be more useful 
than the elemental composition alone. This  i s  obtained by taking the 
elemental ana lys i s  data together with the t a r  yields .  From a knowl- 
edge of coal feed r a t e  and the weighted elemental d i s t r i b u t i o n  i n  t a r ,  
one can determine the ac tua l  amount of a par t icu lar  element tha t  re- 
mains i n  the tar a s  percent of or ig ina l  feed. The overal l  expression 
can be wr i t ten  a s  follows: 

%Conv.x %Xrar x W t a r ( d  
t a r  = 

where, 

%Xtar = Percent composition of element X i n  tar 
Wtar = Amount of t a r  col lected 
rcoal - Coal feed r a t e  
tr = Duration of coal feed 
xxcoai = Percent composition of element X i n  coal 
a - Frac t ion  of ash i n  coal 
%Conv.Xtar = Percent of element X i n  or ig ina l  feed t h a t  

remains i n  tar 

Figure 4 shows the e f f e c t  of temperature on the calculated 
amounts of t o t a l  C ,  H ,  N and (WS) remaining i n  t a r .  Most of the 
decline i n  the r e t e n t i o n  of elements i n  t a r  occurs between 700° and 
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8OOOC. The qua l i ty  and quant i ty  of tar i s  almost unaffected on in- 
creasing the pyrolysis  temperature from 900° t o  1000°C. The ease of 
removal of elements from t a r  follows the order: O>H>C>N. 

I n  Figure 1, i t  was noticed e a r l i e r  t h a t  the carbon conversion t o  
gases and BTX increased with temperature. This increase i n  gases and 
BTX y ie lds  i s  found to  be a t t r i b u t e d  to the secondary decomposition 
react ions of the tar ra ther  than to addi t iona l  coal  devola t i l i za t ion .  
This  i s  shown i n  Figure 5 ,  i n  which t o t a l  carbon conversion to  a l l  
products (hydrocarbon gases + COX + BTX + t a r )  is plot ted a g a i n s t  t e m -  
perature. There i s  no s i g n i f i c a n t  change i n  carbon conversion as the 
temperature is increased from 7000 t o  1000°C. Thus, i n  the case of 
pyrolysis  of coal i n  the presence of an  i n e r t  gas, such a s  helium, de- 
v o l a t i l i z a t i o n  i s  almost complete by 7OO0C, the lowest temperature 
used i n  the BNL reactor .  The tar y i e l d  has been reported to maximize 
a t  6OO0C i n  the case of pyrolysis  of a Texas l i g n i t e  i n  a continuous 
bench-scale reactor(6) .  

l H  and 13C NMR s ectroscopy has been widely used to charac te r ize  
coal-derived liquids(y-lo). The l H  NHR spec t ra  (60  MHz) of the t a r s  
derived from the BNL reac tor  a r e  shown i n  Figure 6. The assignment of 
a given chemical s h i f t  range to  a p a r t i c u l a r  type of hydrogen is based 
on the suggestions by Stompel and B a r t l e ( l l ) .  The percentage d i s t r i -  
bution of hydrogen under a given category is obtained by dividing the 
a rea  integrated within the chemical s h i f t  range corresponding to  t h a t  
category by t o t a l  area integrated.  

The calculated 1H-NMR hydrogen d i s t r i b u t i o n  i n  tars i s  l i s t e d  i n  
Table 2 .  The e f f e c t  of temperature on hydrogen d i s t r i b u t i o n  i s  graph- 
i c a l l y  shown i n  Figure 7. The aromatic hydrogen d i s t r i b u t i o n  i n  the 
t a r s  increases with pyrolysis  temperature, whereas there i s  a decrease 
i n  a l l  other  forms of hydrogen. The main difference between d i f f e r e n t  
curves is i n  t h e i r  slopes. The only exception is hydrogen i n  B-posi- 
t i o n  to  an aromatic r ing,  the d i s t r i b u t i o n  of which is not  a f fec ted  by 
temperature. 

The ac tua l  amount of aromatic hydrogen and non-aromatic hydrogen 
(phenolic hydrogen + a l i p h a t i c  hydrogen) i n  tar can be ca lcu la ted  from 
the I H  NMR hydrogen d i s t r i b u t i o n  da ta ,  X hydrogen content of  the t a r  
and the t a r  yield.  The ac tua l  amounts of aromatic and non-aromatic 
hydrogen i n  tar a r e  plot ted a g a i n s t  temperature i n  Figure 8. The ac- 
tua l  amounts of both types of hydrogen decrase with increase i n  t e m -  
perature ,  the trend being similar t o  the one noted i n  Figure 4. 

CONCLUSION 

A s e r i e s  of f l a s h  pyrolysis  conclusion experiments with a New 
Mexico sub-bituminous coal i n  a downflow entrained tubular  reactor  
shows t h a t  the devola t i l i za t ion  process is complete by 7OO0C in a he- 
lium atmosphere. Further  increase i n  temperature causes the secondary 
cracking of tar leading to the formation of l i g h t e r  products without 
enhancing devola t i l i za t ion  i t s e l f .  The ease of removal of elements 
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from pyrolysis tar as a function of temperature follows the order: 
O>H>C>N.  On a compositional bas i s ,  the d i s t r ibu t ion  of aromatic hy- 
drogen i n  tars increased with temperature, whereas tha t  of a l l  other  
forms of hydrogen followed an opposite trend. However, the actual 
amounts of a l l  forms of hydrogen present  i n  t o t a l  tar decreased with 
increase i n  pyrolysis  temperature. 
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TABLE 1. ANALYTICAL DATA FOR NEW MEXICO SUB-BITUMINOUS COAL 

Ultimate Analysis (we X dry) Ultimate Analysis (dry) 

Vo la t i l e  Matter : 34.9 Carbon : 55.9 

Hydrogen : 4.3 Fixed Carbon : 42.4 

Nitrogen : 1.1 Ash : 22.8 

Sulfur : 1.0 

Oxygen (by di f f . )  : 14.9 

TABLE 2. FLASH PYROLYSIS OF NEW FEXICO SUB-BITUMINOUS COAL 
50 p s i  HELIUM, 1.5 sec  RESIDENCE TIME 

HYDROGEN DISTRIBUTION I N  TAR FRACTIONS (IH NMR) 

Temperature, OC I H  Chemical 
Hydrogen Type S h i f t  Range 

(ppm from TMS) 700 800 900 1000 

Aroma t i c  6.5-9 .O 

Phenol i c  5.5-6.5 

Olef i n i c  4.5-5.5 

Benzylic 3.3-4.5 

CH3,CH2, and CH-a t o  an 
aromatic r ing  2.0-3.3 

CH2 and CH 6 t o  an 
aromatic r ing  (naphthenic) 1.6-2.0 

B-Ch3,CHz and CH-y 
t o  an  aromatic r i n g  1.0-1.6 

CH3 y or fu r the r  frcm 
an aromatic r ing  0.5-1.0 

27.4 

5.7 

9.4 

11.3 

24.5 

4.7 

12.3 

4.7 

43.9 57.5 

3.9 2.3 

6.1 2.3 

8.8 4.6 

19.9 17.1 

2.7 2.6 

12.0 11.9 

2.7 1.8 

64.7 

1.5 

1.5 

4.4 

11.8 

2.9 

11.8 

1.5 
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Figure 2 .  Effect of Temperature on Tar Yield. 
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Figure 3 .  Effect  of Temperature on Elemental Composition of Tar. 
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Figure 6 .  60 MHz ' H  NMR Spectra of Pyrolysis  Tars. 
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